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Abstract. The need to count the number of parts per object arises in
many yield estimation problems, like counting the number of bananas in
a bunch, or the number of spikelets in a wheat spike. We propose a two-
stage detection and counting approach for such tasks, operating in field
conditions with multiple objects per image. The approach is implemented
as a single network, tested on the two mentioned problems. Experiments
were conducted to find the optimal counting architecture and the most
suitable training configuration. In both problems, the approach showed
promising results, achieving a mean relative error in range of 11%−12% of
the total visible count. For wheat, the method was tested in estimating
the average count in an image, and was shown to be preferable to a
simpler alternative. For bananas, estimation of the actual physical bunch
count was tested, yielding mean relative error of 12.4%.

Keywords: deep neural networks, object detection, part counting, yield
estimation

1 Introduction

This work handled a specific kind of phenotyping problems: visual objects’ part
counting, done by first detecting the objects in the image, and then counting
their constituting parts. Such problems repeatedly arise in field phenotyping con-
texts. Examples include counting the number of bananas in banana bunches [48],
the number of spikelets in wheat spikes [37, 3], the number of flowers on apple
trees [10, 13], or the number of leaves in potted plants [11, 21]. While such prob-
lems involve (object) detection and (part) counting, they should not be confused
with single-stage counting or detection problems, and require a non-trivial com-
bination of them.

Object detection is a basic step in several types of agricultural applications.
One important kind is robotic manipulation, like harvesting [43, 4], plants’ dis-
eases and pests recognition [15] or autonomous selective spraying [8]. In another
type of applications, object detection is the first stage for measuring object prop-
erties like height, width and length [5, 49], cluster size estimation [24], or object
classification [18, 54, 25]. In a third type of applications object detection is used
as part of an objects (not parts) counting task [35]. In recent years the detection
task is performed mainly with deep Convolutional Neural Networks (CNNs) [41,
28, 45], that enabled dramatically increased accuracy.
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Fig. 1: Example images with ground truth annotations. Left: Bananas in banana
bunches. Right: Wheat spikelets in spikes. Blue bounding boxes are placed around
measurable objects. Black dots are placed on countable parts. The target count num-
ber (number of visible parts) is stated above each bounding box.

Object counting is also a common phenotyping need for tasks such as yield
estimation [29, 52, 35], blossom level estimation for fruit thinning decisions [10,
51, 13], or plants’ leaf counting for growth stage and health estimation [34, 7, 11,
21]. Different CNN architectures are currently the state of the art for counting
as well [36, 9] and for other phenotyping tasks [22].

Specifically, we address two part-counting problems in this work: banana
count in a bunch, and spikelet count in a wheat spike. Image examples with
annotations for each task are shown in Fig. 1. In both cases, the part count
is an important yield indicator, and measuring it automatically is important
for yield prediction and breed selection [17]. Spikelets counting can assist in
crop management as it can be seen as a form of yield quantification for wheat
crops [3] and the number of bananas in a bunch is one of the properties that
is related to bunch weight and thus productivity [50]. These two very different
problems are handled here with the same algorithm, so we believe the proposed
method is fairly general and can handle other part-counting problems with minor
adjustments.

One may wonder why the ‘parts-counting’ task (which is essentially a ’detect-
then-count’ procedure) cannot be reduced into plain counting, by simply taking
pictures containing a single object in each image. Indeed, in principal this is
possible. In some of the problems mentioned above the two-stage part-object
nature was often bypassed by using images of a single centralized object [13, 34,
7]. However, solving a part counting problem by taking images of single objects
has significant disadvantages. The counting procedure needs to be automated,
rather than being done by tedious manual approach. If a human has to detect
the objects and take single-object images, the process is partially manual with
human intervention. It is hence slower, costs more, and less scalable than a fully
automated system. Another option is to have a robotic system first detecting the
objects, than moving to a close position to each object for taking a second image,
isolating it from a wider scene. While this does not involve human intervention,
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such a system is much more complex to develop, and it also is likely to be slower
than a system based on high resolution images containing multiple objects. Hence
for automatic and flexible field phenotyping, the solution of keeping one object
per image is significantly less scalable.

While parts counting is essentially a two-stage ’detect then count’ task, it
nevertheless raises some unique difficulties. First, parts are much smaller than
their containing objects. Therefore high initial resolution and a re-scaling mech-
anism are required. Second, the system has to filter which detected objects are
passed to the counting stage, and this involves a complex array of considerations.
On the one hand not all objects are ‘countable’: some objects are too far, out of
focus, occluded, or not well-detected. On the other hand one can usually afford
measuring only a subset of the objects, and sometimes it is better to have good
measurements for few than inaccurate measurement for many. While the exact
policy may be task-dependent, the filtering creates dependency between the de-
tector and the data distribution seen by the counter. As will be demonstrated
in Section 4.2, this has implications w.r.t the preferred training procedure.

A third issue arises since counting itself is not a solved problem: there are
several competing approaches, and the better choice seems to depend on data
distribution and quantity, and on availability of annotation. Some counting net-
works work by explicit detection of the objects to count [6, 17, 33], some use
density estimation [44, 26], and others directly regress the count locally or glob-
ally, without intermediate stages [32, 52].

This work explores the design space of possible solutions for parts-counting,
and finds a useful and relatively simple solution. We proposed a single network
combining stages for the object detector, cropping and scaling of the objects, and
then a counting stage with two optional implementations. One uses a counting
module which is a direct regressor, hence part position annotation is not neces-
sary for training. The other does require the objects’ parts annotations, but in
addition to counting, it also provides parts localization. Following experiments,
we recommend choosing between the two possible solutions based on compu-
tational efficiency and the need for part localization considerations, since both
solution provide good and comparable results. The training procedure of the en-
tire network is also discussed, showing that it can be done jointly or separately,
as long as proper noise is introduced during learning.

We benchmark the proposed solutions on the two problems using several
metrics. The most intuitive count measure is the (average) relative deviation,
stating the average deviation of the count from its true value in percentage.
Statistically, an important measure is the fraction of explained variance in the
data. In relative deviation terms, the networks achieve 10.1% and 10.8% for
banana and spikelet count respectively. Statistically, we are able to explain 0.58
and 0.75 of the count variance for the two problems respectively.

While the obtained accuracy is encouraging, it is obtained for estimation of
the visible number of parts. For bananas, which are round and with significant
volume, the visible number and the actual number of bananas in a bunch may
be far from each other, as approximately half the bananas cannot be seen. We
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have collected a separate dataset of bunches with actual counts made manually,
and were able to establish a strong linear connection between visible and actual
banana count. Hence fairly accurate actual counts can also be obtained.

Our contribution is hence two-folded: developing a successful general algo-
rithmic framework for the parts-per-object counting problem, and showing its
merit on two important phenotyping cases. The rest of the paper is organized as
follows: we review related work in Section 2, describe the algorithm in Section 3,
present results in Section 4, and discuss further work in Section 5.

2 Related work

Since our network is composed of two sub-networks for detection and counting,
we discuss how these tasks are approached in general and in the agricultural
domain, than focus on the works closest to our specific tasks.

Visual object detection had significantly advanced in recent years by incorpo-
rating deep neural networks extending CNN architectures. This enables tackling
more intricate tasks as we do here. One line of influential networks includes two-
staged networks like Faster R-CNN [41] or Mask R-CNN [19]. These networks
include a stage of Region Proposal Network (RPN) which finds initial object
candidates, and a second sub-network which accepts the candidates and handles
final classification and bounding-box fine-tuning. Object Candidates are passed
between the two stages by sampling the feature maps produced by the RPN
at Regions of Interest (RoIs). Technically, this is done with a non-differentiable
layer termed RoI Pooling in Faster-R-CNN [16, 41], and RoI Align in Mask-R-
CNN [19], which samples feature map regions into small tensors with a fixed
spatial extent. In our work we use an RoI Align layer to pass detected objects
from the detector into the counting sub-network.

Another line of work includes fully differentiable one-stage architectures.
Early one-stage networks as YOLO [40] and SSD [31] presented faster detec-
tors, but with accuracy lower by 10 − 40% relative to two-stage methods [28].
Later one-stage networks like RetinaNet [28] and more recently EfficientDet [47]
were able to remove the accuracy gap. Specifically RetinaNet introduced the
usage of a Feature Pyramid Network (FPN) [27] for handling larger scale vari-
ability of objects, and a ’focal loss’ variant which well balances between positive
examples (which are few in a detection task) and negative examples.

In the agricultural context, object detection has numerous usages as it is
a basic building block in automated harvesting [43, 4], yield estimation [52, 13],
and phenotyping [5, 49]. Several detection benchmarks [42, 54, 6] have shown that
current detectors obtain high F1 and AP scores in agricultural settings, hence
encouraging two-staged tasks as pursued here. However, in [42, 54] the datasets
included mostly images taken very near to the crop of interest, hence including
only few (typically less than 5) large objects. These images are significantly less
challenging than images taken in our wheat spikelet counting task. In another
work, images were taken in field conditions from a significant distance, with the
target of fruit yield estimation [6]. To overcome the problem of object occlusions,
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it was assumed that on average there is a constant ratio of visible to occluded
fruits, and detection outputs were calibrated with ground-truth counts. We use
a similar assumption in this work.

Counting tasks in agriculture contexts were approached with traditional com-
puter vision techniques [30, 1, 2], but has advanced in recent years by the incor-
poration of CNNs. Basically, there are two main approaches for building counting
networks. The first is based on some form of explicit object localization: objects
are first detected, then counted. The detection task can be defined as detection
of the object’s centers, and so the output is a ’density estimation’ heat map,
a two dimensional map showing where ’objecthood probability’ is high [44, 21].
Alternatively localization can be based on bounding box detection [17, 33, 35]
or segmentation [38, 14, 55]. This methods require object location annotations
like center point annotations (for density estimation), bounding boxes (for de-
tection) or surrounding polygons (for segmentation). The second approach is via
a global [39, 11, 21] or local direct regression model [32, 52]. In global regression,
the model implements a function mapping the entire image (or region) to a single
number, which is the predicted count. In local regression the image (or region)
is divided into local regions and each of them is mapped to a local predicted
count. The local counts are then summed to get the global count.

The literature contains contrasting evidence regarding the relative accuracy
of localization-based versus direct regression methods. In [33] a detection based
method was found superior to direct regression and it is claimed to be more
robust to train-test domain changes. Contrary, at [32] direct regression provides
higher accuracy than density estimation. At [21] the two approaches show similar
performance. An advantage of detection based methods is in being more “de-
bugable” and “explainable”, as it allows to visually inspect where in the image
the network finds objects. It is also able to provide the objects location informa-
tion when it is needed for further processing. However, more computation effort
is required at test time, and an additional annotating effort at train time.

While a lot of previous work has addressed wheat spike counting [32, 52, 17,
33, 14, 2, 55] we are not familiar with work attempting to solve the spikelet-count-
per-spike or the banana-per-bunch problems we face here. Global spikelet count
was addressed in the recent papers [37, 3]. In [37] both spike and spikelets were
counted in glassdoor conditions, where background is surpressed and each image
contains a few large spikes. A density estimation approach was used, with very
good results of relative error < 1% for spikelets and < 5% for spikes. While in
principal the average spikelet-per-spike statistic can be estimated from the two
global counts, we show in our experimental results that this method provides
inferior accuracy in field images. In [3] only spikelets are counted with density
estimation, but in challenging field conditions as we address in our problem.

3 Method

The suggested network is comprised of several components. First is a detection
section responsible for detecting the objects of interest. These are passed to the
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RoI-Align module that crops and resizes the detected objects from the original
image. The crops are passed to the counting section, in which each crop is treated
as an independent input image. It is assumed that each crop contains a single
detected object, and the counting section outputs the parts’ count for that ob-
ject. The assumption’s correctness naturally depend on the performance of the
object detection section. The basic composition of the detection and counting
network is demonstrated in Fig. 2.

Fig. 2: The Detection and Counting Network. The network includes two separate sec-
tions for object detection and part counting, connected by an object re-sampling layer

.

The detection section is a re-implementation of the RetinaNet architecture,
composed of ’Backbone’, ’Find’ and ’Where’ modules, whose details are ex-
plained in Section 3.1. The RoI-Align module receives as input the original image
and a set of rectangle coordinates of the detected objects. By re-sampling the
image according to the given coordinates, it outputs a tensor of size s× s× nd

of image crops, where s is the new object size (empirically set to 640) and nd is
the number of detected objects. We use the RoI-Align implementation of Mask-
R-CNN [19] which currently does not support gradient transfer. The counting
section includes re-implementations of the counters proposed by [21], composed
using ’Backbone’, ’Find’ and ’Count’ modules. Modules re-used in different sec-
tions (’Backbone’ and ’Find’ appear in both the detector and counter sections)
share code and architecture, but not parameters. The counters and their com-
position using the modules are described at Section 3.2.

Both the Detection and the counting sub-networks have their own separate
losses, which are learned separately. The training methodology of the whole
network is discussed at Section 4.2.

3.1 The detection section

The relevant modules for the detection section of the network are the following:
“Backbone”: A module used for creating a dense feature-rich representation

of the image. It is based on applying ResNet-50 [20] as a dense convolutional
network followed by FPN [27] on top of it. The FPN architecture generates a
rich 5-scale feature pyramid (P3-P7) representation of the input image. These
tensors include similar representations of the original image in multiple octaves,
with Pi twice smaller than Pi−1 in its spatial dimensions. Therefore they enables
object detection at multiple scales. In all experiments we have used the ResNet-
50 network with weights pre-trained on ImageNet and fine-tuned them.
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“Find” (for detection): The module includes 4 convolutional layers and
it is trained for spatially locating objects in an input tensor representation. It
supports two output modes with the first used for the detection section, the sec-
ond for the counting section. For the detection pipeline, it implements the fully
convolutional classification sub-network of RetinaNet that predicts the proba-
bility of object presence at each spatial position of an input tensor. At each
position, this probability is estimated for nine possible anchor rectangles of pre-
defined sizes and aspect ratios. The output tensor is thus with the same spatial
dimensions as the input, but with nine score maps. The ’Find’ module processes
independently all the five pyramid tensors produced by the Backbone’s FPN. It
is trained with the Focal loss, designed to address possible imbalance between
foreground and background classes during training [28].

“Where”: This module implements the bounding box regression sub-network
of RetinaNet. Accepting a representation tensor as input, it predicts for every
position and possible anchor (among the nine considered) a 4-dimensional bound-
ing box refinement vector (so the output includes 36 maps overall). The vector
includes corrections required for the bounding box to better match the object in
its (x, y, width, height) parameters. It is trained by propagating an smooth-L1-
regression loss matching the predicted values to ground-truth rectangles - only
for anchors with relevant objects. Like the ’Find’ module, the module processes
all the pyramid tensors P3− P7, and produces 5 output tensors.

“Get final bounding boxes”: This function accepts the output tensors
of the ’Find’ and ’Where’ modules and creates a refined list of predicted boxes
containing presumed objects. It filters boxes with predicted object probability
higher than 0.7 from the ’Find’ module, and decodes the refined boxes for them
according to the ’Where’ module. The predictions from all pyramid levels are
merged and a non-maximum suppression procedure with a threshold of 0.3 is
applied to yield the final detections list.

3.2 The counting section

Given an input image with a single object, the counting section outputs the
count value of its parts. It has two variations, following the proposed architec-
tures by [21]. The first variation uses the implementation of the Multiple Scale
Regression (MSR) algorithm, that directly regresses the count value. The second
variation is a re-implementation of the Detection+Regression (D+R) algorithm
which predicts heat maps of the parts centers in addition to counting them, and
thus requires parts location annotations in training. In both cases, the count-
ing section starts with a second ’Backbone’ module receiving as input detected
region objects. Figure 3 include box-diagrams of the two Counting methods.

MSR “Count”: In this module, the representation tensors P3-P7 generated
by the ’Backbone’, or a subset of them, are each sent to a direct regression mod-
ule, so multiple count estimations are produced based on different resolutions.
This regression module includes several convolutional and fully connected layers
culminating in a two outputs neurons: the first predicts the expected count, and
the second estimates the variance of the error expected in prediction, using the
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Fig. 3: Architectures of the proposed counters. a: The MSR ’Count’ module architec-
ture, b: The D+R ’Find’ and ’Count’ modules.

loss function suggested in [23]. The count estimates are then fused as a weighted
average with weights based on the variance values.

For the D+R variation, the count section includes a ’Find’ module variation
described next, and then a different ’Count’ module.

“Find” (for counting): This module has similar architecture to the “Find”
module used in detection, but it is used to ’Find’ center points instead of bound-
ing box rectangles. The module operates only on the high-resolution pyramid
scale (P3), and a single output map of the same resolution is created, stating
the probability of object presence at each location. To learn this network, a
ground truth heat map is created in training, with a Gaussian kernel placed
around each parts’ center. Like the detection “Find” module, the module con-
tains four convolutional layers, but after that a single final map is predicted. It
is trained to mimic the ground truth heat map using a dense L1 regression loss.

Following [21], we tested the option of guiding internal layers by predicting
an intermediate heat map after each convolutional layer, and forcing it to mimic
the ground truth heat map with additional regression losses. When this is done,
the intermediate guiding heat maps are created with decreasing kernel size, so
the heat map regression task is cruder and simpler at initial layers.

D+R “Count”: This module gets from the ’Find’ module the predicted heat
map and the feature tensor preceding it, and provides a count estimate based
on them. It is an implementation of the “Counting sub-network” of the D+R
pipeline of [21]. The heat map is subjected to a smooth non-maxima suppression
operation, keeping activity of the most active points close to ones while all others
are zeroed. These remaining active points are object center predictions, and a
global sum operation now gives an initial detection-based estimator of the count.
In addition to this path, the tensor preceding the map is globally summed to
extract additional useful features, and the final count estimate is computed as
linear regression from these features and the detection-based estimate.
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Dataset Train
(Images/Objects/Parts)

Validation
(Images/Objects/Parts)

Test
(Images/Objects/Parts)

Wheat 44/223/3523 27/102/1779 30/135/2347

Banana 72/82/6822 34/41/3372 35/44/3432

Table 1: Datasets sizes

4 Experiments and results

We describe the datasets used and performance evaluation methodology in Sec-
tion 4.1. Results in the part counting tasks and experiments measuring the rela-
tion between visible and actual number of parts for banana bunches are presented
in Section 4.2.

4.1 Experimental setup

Wheat dataset: The collected dataset includes 101 RGB images taken in an
agricultural facility in the Central District of Israel. High resolution images of
several wheat varieties in field conditions were taken using a commercial DSLR
camera. Since the original images included hundreds of wheat spikes, several
regions (usually 4-5) in focus were handpicked in each image. Theses areas were
cropped and treated as separate images that were passed for annotation of well
defined, measurable spikes.

Bananas dataset: 141 RGB images were captured in a facility in the North-
ern District of Israel. Images included banana bunches of different varieties and
stages of the reproductive phase. These were taken using commercial 9MP-12MP
mobile device cameras and a digital point-and-shoot cameras in field conditions.
The common resolutions were 2340× 4160 and 3024× 4032.

All images were annotated with bounding boxes for countable objects, and
with center dot annotation for each object part. Countable objects were defined
as “objects for which a human annotator can visually count the parts”. At least
for wheat, the distinction between countable and non-countable spikes is slightly
vague, and depends to some extent on the annotators’ judgement. The number
of images, objects and parts used is listed in Table 1.

Detection performance is measured by the Average Precision (AP) met-
ric [12]. An object is considered to be found if its Intersection over Union (IoU)
is at least 0.5 with a ground truth object annotation. For counting, denote the
set of ground truth counts of the test set by {yi}Ni=1 and the set of count pre-

diction of the model by {ŷi}Ni=1. We estimate counting accuracy using the Mean
Relative Deviation (MRD) and 1− FV U statistics defined as follows:

MRD =

N∑
i=1

[
|ŷi − yi|

yi
] 1− FV U = 1−

∑N
i=1(yi − ŷi)

2∑N
i=1(yi − ȳ)

(1)



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#12
ECCV

#12

10 CVPPP-20 submission ID 12

Where ȳ = 1
N

∑N
i=1 yi is the mean ground truth count. The relative deviation

states the count deviation as a fraction of the total count (the count deviation
percentage). 1 − FV U , known as the fraction of explained variance, checks if
the quality of the predictor we use (its least squares error in the nominator) is
significantly better than the trivial predictor of guessing that yi is always equal
to the mean y (the least square error of this predictor is the denominator - it is
also the variance of y).

For each dataset, counting networks were trained for 300 epochs. The best
epoch was chosen as the one with the lowest mean relative deviation, measured
on the validation set, and averaged across IoU thresholds of 0.3, 0.5 and 0.7. This
model was then tested on the test set images, providing the reported results.

4.2 Results

Based on the stages order of the suggested method, we start by describing object
detection results. Then we report part counting results obtained with various
counters, and consider the effect of training procedure on the obtained accuracy.
Next, we compare the results to an alternative approach, in which objects and
parts are counted independently, and report experiments predicting the actual
physical count for banana bunchs.

Detection results: High confidence thresholds were chosen for the trained
object detectors, to provide high precision. This ensures that at least 90% of the
detections ares countable objects, with some cost in recall rates. Table 2 shows
the recall and precision of the detectors used on the test set. As can be observed
from the recall statistics, for wheat the detection problem is more difficult, due
to the fine distinction required between countable and non-countable spikes.

Dataset Number of Objects Recall Precision

Wheat spike 135 45.9% 93.9%

Banana bunch 43 81.4% 100.0%

Table 2: Test set recall and precision of the object detectors.

Part counting accuracy: We have experimented with variations of the
two counting architectures suggested in [21], described in Section 3. Counting
modules were trained while keeping the detection section fixed. Results of the
tested counters are shown in Table. 3. It can be seen that the best counters are
able to achieve relative deviation close to 11% in both tasks. The best methods
for the two tasks are not the same, though. On the wheat dataset, the direct
regression MSR performs better, while for the banana dataset detection based
counting is superior. We believe this lack of consistency across tasks can be
attributed to a simple fact: detection of bananas is much easier than detection
of wheat spikelets, which are smaller and sometimes confused with spikelets of
neighboring spikes. Since explicit detection of the relevant parts is more difficult
for wheat, the D+R method based on such explicit detection is weaker. It can be
seen in table 3 that for the wheat task, the results improve when less attempts
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Counting
Approach

Wheat Banana
Mean

Relative
Deviation

1-FVU
Mean

Relative
Deviation

1-FVU

MSR (p3) 11.4% 0.718 13.5% 0.341

MSR (p3 - p5) 10.8% 0.745 13.4% 0.349

MSR (p3 - p7) 11.6% 0.652 12.7% 0.375

D+R 14.1% 0.641 12.1% 0.461

D+R (same radii) 12.9% 0.684 11.5% 0.581

D+R (no intermediate losses) 11.0% 0.759 13.1% 0.426

Table 3: Part counting results for several counter ablations. The first three rows show
the results obtained by the MSR approach, when integrating a single resolution (P3),
3 resolutions (P3 − P5), or the originally proposed 5 resolutions (P3 − P7). The last
three rows show results of the D+R method. The original D+R method is compared to
a variation in which the learned heat maps are generated with fixed kernel size (same
radii), and to a variation in which no intermediate losses are used.

are made to “educate” the network toward explicit detection (as we move from
the original D+R method toward complete lack of intermediate detection losses).

The part detection results of the D+R method, presented at Fig. 4, further
support the above mentioned view. It can be seen that banana fruits are much
easier to detect, with AP of 0.89 obtained, while for spikelets it is only 0.61. A
demonstration of the networks D+R pipeline operation can be seen in Fig. 5.

Training methodology. In the training procedure described above, the
detector is kept fixed while the counter is training. However, several other options
are possible. One appealing option is to use a ’perfect’ detector in training, which
provides the counter with ground truth object bounding boxes, thus enabling it
to train in ’ideal’ conditions. An opposite intuition is that the counter should
train in far from ideal, noisy conditions, so training should include detection
noise. We have experimented with several alternatives using the best counter
found for the wheat dataset (MSR using resolutions P3-P5), and the results are
shown in Table 4. The main trend visible is that training with a perfect oracle
detector provides inferior results - the counter needs to see imperfect bounding
boxes while training. However, obtaining such imperfect bounding-boxes can be
done either by using the imperfect detector, or/and by adding explicit detection
noise. Training the detector simultaneously with the counter reduced accuracy
a bit for the wheat problem, but it can be considered if training time is an
issue (as training simultaneously is faster than stage-wise training). Moreover
using a similar simultaneous training approach helped us to improve the relative
deviation of the D+R method on the banana dataset to 10.1% (with 1-FVU =
0.584)

Image average counts and comparison to independent object and
part counting. In the wheat task, the statistic of interest for the breeder is
not the spikelet count per specific spikes, but the average of this count over
the entire piece of land captured in the image. Hence an alternative approach
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Fig. 4: Precision-Recall curves for parts detection, obtained by the D+R method. Un-
like the direct regression, this method provides explicit localization of the detected
parts, evaluated in these curves. In order to determine if a part detection is a hit or a
miss we use the Percentage of Correct Keypoints (PCK) criterion, introduced in [53]
and applied as in [21]. Left: Wheat spikelets. Right: Banana fruits in a bunch.

Fig. 5: Example of the network’s stages performance with the D+R pipeline. Top
Row: Banana, Bottom Row: Wheat. (1). Object detection (blue-ground truth, red-
predictions),(2). Getting image crops of the detected objects, (3). Ground truth Gaus-
sisan heat map of the objects’ parts, (4). The final predicted heat map of the parts’
centers. White box shows the detections of unannotated parts, found by the predicted
map.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV

#12
ECCV

#12

Abbreviated paper title12 13

Training Regime Description
Mean
Relative
Deviation

1-FVU

T1 Fixed Test Detector 10.8% 0.745

T1 w. ST
Fixed Test Detector
+ scale and translation augmentation

10.7% 0.649

T1+
Test Detector at t=0
+ subsequent learning

11.4% 0.588

TP Perfect Detector 13.8% 0.479

TP w. ST
Perfect Detector
+ scale and translation augmentation

10.6% 0.637

L Learning detector together with counter 11.6% 0.600

Table 4: Results of the MSR with P3-P5 counter (“fusing” three resolutions) trained
with several procedures varying w.r.t the training detector. All methods were tested
under the same conditions as in previous experiment, i.e. using the wheat object detec-
tor reported in Table 2. In bounding box noise addition, boxes provided by the detector
were translated horizontally and vertically and scaled by random factors, drawn from
the uniform distributions over [−10 : 10], [0.9 : 1.1] respectively (translation offsets are
in pixels)

seems reasonable: counting the number of objects in the image (spike count),
independently count the parts (spikelets), and then divide the two counts to
get the average of interest. While this approach is simple, it suffers from two
disadvantages relative to the two staged approach. First, it does not include a
resize mechanism enlarging the relevant objects, hence detection of the small
spikelets is more difficult. Second, not all spikes are ’countable’ (due to scale
and occlusion), and in many spikes only part of the spikelets can be observed.
Independent counting of spikelets is therefore likely to count spikelets which do
not belong to countable spikes, producing an over-estimation.

We empirically tested the subject by training a detector for independent
detection of spikes and spikelets. An output example of this detector is presented
in Fig. 6. For each image, an estimated value ŷd of the average spikelets per spike
was computed as the ratio of the detected spikelets count and the detected spikes
count. To enable fair comparison with the two-stage method, which has internal
ability for linear regression, a regressor of the form ŷ = aŷd + b was trained. The
coefficients a, b were chosen to minimize the squared error expectation over the
validation set Ev[ŷ−ygt)2]. For the two stage method, an estimate of the average
(over image) spikelets-per-spike was computed by simple averaging of the spikelet
count over all detected spikes. Comparison between the two methods, presented
in table 5, shows that the 2-stage method is significantly more accurate.

Physical Counting. While for countable wheat spikes the vast majority
of the spikelets are visible, banana bunches are round objects, where typically
at least half of the bananas are occluded. An additional dataset was collected
to investigate the relation between actual and visual banana count, containing
30 banana bunches with known actual count, photographed from 3 viewpoints
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Fig. 6: Ground truth (blue) and pre-
dicted (red) bounding boxes for spike
and spikelets detected independently. The
lack of object-part correspondence is
clearly visible.

Method
Mean
Relative
Deviation

Pearson
Correlation
Coefficient

Two Stage 11.50% 0.937

Independent 17.82% 0.565

Table 5: Accuracy comparison between
the two-stage and the independent detec-
tion methods.

Predicting from
Mean
Relative
Deviation

1-FVU

Visual ground truth 12.42% 0.554

Network predictions 12.42% 0.541

Table 6: Prediction of actual banana
fruits count per bunch based on visual
ground truth count, and based on network
predictions.

each. Linear regression deviation was then estimated using a Leave-one-out cross
validation procedure. This was done for inference of the actual count from the
visual ground truth count, and (separately) from the network predicted count.
The accuracy obtained is reported in table 6.

5 Conclusions and future work

We presented a two-staged network that successfully performs per-object part
counting in terms of relative count deviation and 1-FVU measurements. It was
demonstrated on two real world agricultural problems, counting banana fruits in
a bunch and spikelets in a spike, with images taken in field conditions. Several
technical improvements should be considered in future work, including replacing
the non-differentiable RoI-Align module with a differentiable one, or replac-
ing the ResNet based backbone with an improved alternative such as Efficient-
Net [46]. Beyond these, it would be interesting to test the suggested approach
in additional part counting tasks.
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